Eurasian Chemico-Technological Journal (Jan 2018)

The Role of Carbonized Layers for Fire Protection of Polymer Materials

  • Z. A. Mansurov,
  • B. Ya. Kolesnikov,
  • V. L. Efremov

DOI
https://doi.org/10.18321/ectj709
Journal volume & issue
Vol. 20, no. 1
pp. 63 – 72

Abstract

Read online

The present work studies the processes occurring in pre-flame zone in the form of «candle-like flame» which is spread over the surface of epoxy polymer. As exemplified by epoxy polymer, it can be seen that the dominating mechanism of heat transfer from flame to pre-flame zone of carbonized polymers is a thermal conductivity by condensed phase (to phase). The mechanism of gasification processes in pre-flame zone is proposed. Gasification of the material in front of the flame edge is a controlling process, and when selecting flame retardants, it is necessary to register their ability to influence on kinetics and mechanism of gasification. The flame leading edge is bordered with the surface of polymer, which largely determines the nature of heat transfer in pre-flame region. Due to investigations of gas-phase composition at «candle-like» combustion of epoxy polymer it has been detected a considerable amount of oxygen (up to 10‒12%) near burning surface. Its presence facilitates the thermal oxidation of polymer, moreover the rate of thermal oxidation can significantly exceed the thermal decomposition rate of the polymer. The possibility to form the heat-insulating intumescent layer during decomposition of carbonizable polymers was used at development of flame retardant coatings ‒ complex multicomponent systems. Which in turns forms the intumescent carbonized layer with high porosity and low thermal conductivity, and protects based material or construction from premature heating up to critical temperatures.