Applied Sciences (Mar 2021)
Multimodal Unsupervised Speech Translation for Recognizing and Evaluating Second Language Speech
Abstract
This paper addresses an automatic proficiency evaluation and speech recognition for second language (L2) speech. The proposed method recognizes the speech uttered by the L2 speaker, measures a variety of fluency scores, and evaluates the proficiency of the speaker’s spoken English. Stress and rhythm scores are one of the important factors used to evaluate fluency in spoken English and are computed by comparing the stress patterns and the rhythm distributions to those of native speakers. In order to compute the stress and rhythm scores even when the phonemic sequence of the L2 speaker’s English sentence is different from the native speaker’s one, we align the phonemic sequences based on a dynamic time-warping approach. We also improve the performance of the speech recognition system for non-native speakers and compute fluency features more accurately by augmenting the non-native training dataset and training an acoustic model with the augmented dataset. In this work, we augment the non-native speech by converting some speech signal characteristics (style) while preserving its linguistic information. The proposed variational autoencoder (VAE)-based speech conversion network trains the conversion model by decomposing the spectral features of the speech into a speaker-invariant content factor and a speaker-specific style factor to estimate diverse and robust speech styles. Experimental results show that the proposed method effectively measures the fluency scores and generates diverse output signals. Also, in the proficiency evaluation and speech recognition tests, the proposed method improves the proficiency score performance and speech recognition accuracy for all proficiency areas compared to a method employing conventional acoustic models.
Keywords