JMIR Medical Informatics (Apr 2024)
Evaluating ChatGPT-4’s Diagnostic Accuracy: Impact of Visual Data Integration
Abstract
BackgroundIn the evolving field of health care, multimodal generative artificial intelligence (AI) systems, such as ChatGPT-4 with vision (ChatGPT-4V), represent a significant advancement, as they integrate visual data with text data. This integration has the potential to revolutionize clinical diagnostics by offering more comprehensive analysis capabilities. However, the impact on diagnostic accuracy of using image data to augment ChatGPT-4 remains unclear. ObjectiveThis study aims to assess the impact of adding image data on ChatGPT-4’s diagnostic accuracy and provide insights into how image data integration can enhance the accuracy of multimodal AI in medical diagnostics. Specifically, this study endeavored to compare the diagnostic accuracy between ChatGPT-4V, which processed both text and image data, and its counterpart, ChatGPT-4, which only uses text data. MethodsWe identified a total of 557 case reports published in the American Journal of Case Reports from January 2022 to March 2023. After excluding cases that were nondiagnostic, pediatric, and lacking image data, we included 363 case descriptions with their final diagnoses and associated images. We compared the diagnostic accuracy of ChatGPT-4V and ChatGPT-4 without vision based on their ability to include the final diagnoses within differential diagnosis lists. Two independent physicians evaluated their accuracy, with a third resolving any discrepancies, ensuring a rigorous and objective analysis. ResultsThe integration of image data into ChatGPT-4V did not significantly enhance diagnostic accuracy, showing that final diagnoses were included in the top 10 differential diagnosis lists at a rate of 85.1% (n=309), comparable to the rate of 87.9% (n=319) for the text-only version (P=.33). Notably, ChatGPT-4V’s performance in correctly identifying the top diagnosis was inferior, at 44.4% (n=161), compared with 55.9% (n=203) for the text-only version (P=.002, χ2 test). Additionally, ChatGPT-4’s self-reports showed that image data accounted for 30% of the weight in developing the differential diagnosis lists in more than half of cases. ConclusionsOur findings reveal that currently, ChatGPT-4V predominantly relies on textual data, limiting its ability to fully use the diagnostic potential of visual information. This study underscores the need for further development of multimodal generative AI systems to effectively integrate and use clinical image data. Enhancing the diagnostic performance of such AI systems through improved multimodal data integration could significantly benefit patient care by providing more accurate and comprehensive diagnostic insights. Future research should focus on overcoming these limitations, paving the way for the practical application of advanced AI in medicine.