European Journal of Medical Research (Jan 2023)

LncRNA–mRNA expression profile and functional network of vascular dysfunction in septic rats

  • Ye-Chen Han,
  • Zhu-Jun Shen,
  • Yi-Ning Wang,
  • Ruo-Lan Xiang,
  • Hong-Zhi Xie

DOI
https://doi.org/10.1186/s40001-022-00961-z
Journal volume & issue
Vol. 28, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background We used microarrays to analyse the changes in long non-coding RNAs (lncRNAs) and mRNAs in aorta tissue in model rats with lipopolysaccharide-induced sepsis and determined the lncRNA–mRNA and lncRNA–miRNA–mRNA functional networks. Methods Wistar rats were intraperitoneally injected with lipopolysaccharide, and the lncRNA and mRNA expression profiles in the aorta were evaluated using microarrays. The functions of the differentially expressed mRNAs were analysed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. We then constructed coding/non-coding co-expression and competing endogenous RNA networks to study the mechanisms related to sepsis in rats. Results We identified 503 differentially expressed lncRNAs and 2479 differentially expressed mRNAs in the model rats with lipopolysaccharide-induced sepsis. Mitochondrial fission process 1 (MTFP1) was the most significantly down-regulated mRNA. Bioinformatics analysis showed that the significantly down-regulated mRNAs in the sepsis models were in pathways related to mitochondrial structure, function, and energy metabolism. Coding/non-coding co-expression and competing endogenous RNA analyses were conducted using 12 validated lncRNAs in combination with all mRNAs. The coding/non-coding co-expression analysis showed that the 12 validated lncRNAs were mainly regulatory factors for abnormal energy metabolism, including mitochondrial structure damage and aberrant mitochondrial dynamics. The competing endogenous RNA analysis revealed that the potential functions of these 12 lncRNAs might be related to the inflammatory response. Conclusion We determined the differentially expressed lncRNAs and mRNAs in the aorta of septic rats using microarrays. Further studies on these lncRNAs will help elucidate the mechanism of sepsis at the genetic level and may identify potential therapeutic targets.

Keywords