Animal Nutrition (Jun 2022)
Calcium supplementation in low nutrient density diet for meat ducks improves breast meat tenderness associated with myocyte apoptosis and proteolytic changes
Abstract
To define the relationship between dietary nutrient density, calcium (Ca), and meat quality in meat ducks. A total of 288 male Cherry Valley SM3 medium ducklings were fed a common standard starter diet until d 14. At 15 d of age, ducks were randomly divided into 2 treatment groups and fed either a conventional diet or a low nutrient density (LND) diet. Compared with the conventional diet, the energy was reduced in the LND diet by 8.6% and 16.8% in grower (15 to 35 d) and finisher (36 to 56 d) phases, respectively, while other essential nutrients were kept proportionate to energy. The LND diet decreased the shear force (P < 0.05) and increased the lightness values of the pectoralis muscle when compared to the conventional diet, suggesting that LND diet exerted a beneficial role in meat quality. Subsequently, the effects of grated Ca in the LND diet on meat quality of pectoralis muscle were evaluated. A total of 576 male ducklings were fed a common starter diet until d 14, followed by feeding 4 LND diets with 0.5%, 0.7%, 0.9%, and 1.1% Ca. The results show that LND diets with 0.7% or more Ca decreased the shear force of pectoralis major muscle in 42-d-old meat ducks (P < 0.05). To explore the mechanism underlying Ca and tenderness, data from birds fed either 0.5% or 1.1% Ca in the LND diet indicated that birds fed 1.1% Ca exhibited lower shear force, upregulated calpains 1 expression, and higher calpains activity compared to those fed the LND diet with 0.5% Ca (P < 0.05). Moreover, the 1.1% Ca LND diet induced a higher myocyte apoptosis (P = 0.06) and upregulated mRNA expression of caspase-3 (P = 0.07) in breast muscle. Our data suggest that LND diets with 0.9% or 1.1% Ca had a positive role in the tenderness of breast meat, particularly the enhancing effect of 1.1% Ca LND diet on tenderness seems to be associated with proteolytic changes of myofibrillar proteins and myocyte apoptosis in meat ducks.