Plants (Sep 2023)

Strigolactones GR-24 and Nijmegen Applications Result in Reduced Susceptibility of Tobacco and Grapevine Plantlets to <i>Botrytis cinerea</i> Infection

  • Dominic Vogel,
  • Paul Hills,
  • John P. Moore

DOI
https://doi.org/10.3390/plants12183202
Journal volume & issue
Vol. 12, no. 18
p. 3202

Abstract

Read online

Priming agents are plant defence-inducing compounds which can prompt a state of protection but may also aid in plant growth and interactions with beneficial microbes. The synthetic strigolactones (±)-GR24 and Nijmegen-1 were evaluated as potential priming agents for induced resistance against Botrytis cinerea in tobacco and grapevine plants. The growth and stress response profiles of B. cinerea to strigolactones were also investigated. Soil drench treatment with strigolactones induced resistance in greenhouse-grown tobacco plants and restricted lesion development. The mode of action appeared to function by priming redox-associated compounds to produce an anti-oxidant protective response for limiting the infection. The results obtained in the in vitro assays mirrored that of the greenhouse-grown plants. Exposure of B. cinerea to the strigolactones resulted in increased hyphal branching, with (±)-GR24 stimulating a stronger effect than Nijmegen-1 by affecting colony diameter and radial growth. An oxidative stress response was observed, with B. cinerea exhibiting increased ROS and SOD levels when grown with strigolactones. This study identified the application of strigolactones as potential priming agents to induce disease resistance in both tobacco and grapevine plants. In addition, strigolactones may alter the ROS homeostasis of B. cinerea, resulting in both morphological and physiological changes, thereby reducing virulence.

Keywords