Techno.Com (Feb 2025)
Optimasi Support Vector Machine Dengan PSO Untuk Klasifikasi Kelayakan Export Kerang Batik
Abstract
Kerang Batik (Paphia undulata) memiliki pola cangkang yang mirip batik, dengan warna dasar cangkang yang bervariasi dari kuning cerah hingga gelap. Sebagai komoditas ekspor Indonesia yang permintaannya terus meningkat, penting untuk menjaga standar kualitas tinggi agar kerang siap ekspor. Penelitian ini menyelidiki metode kontrol kualitas yang efektif untuk kerang batik yang layak ekspor dengan mengambil sampel dari perusahaan terkait. Setelah proses pra-pemrosesan citra, dilakukan ekstraksi fitur, termasuk fitur bentuk (eccentricity, metric) dan fitur tekstur (GLCM). Fitur-fitur ini digunakan dalam algoritma SVM (Support Vector Machine) dengan kernel RBF, yang dipilih karena kemampuannya menangani data non-linear, untuk mencapai akurasi optimal. Metode optimasi PSO (Particle Swarm Optimization) juga diterapkan untuk meningkatkan akurasi lebih lanjut. Penelitian menunjukkan bahwa SVM dengan kernel RBF mencapai akurasi tertinggi sebesar 96,43% pada sudut 45° dan 90°. Setelah dioptimalkan dengan PSO, akurasi meningkat menjadi 97,86% pada sudut 90°. Dengan demikian, penerapan PSO pada algoritma SVM secara signifikan meningkatkan akurasi klasifikasi. Kata kunci: SVM, PSO, Kerang Batik, Kernel RBF, GLCM