Frontiers in Neurology (Jul 2024)

Stochastic electrical stimulation of the thoracic or cervical regions with surface electrodes facilitates swallow in rats

  • In Kitamura,
  • Michael Frazure,
  • Kimberly Iceman,
  • Takuji Koike,
  • Teresa Pitts

DOI
https://doi.org/10.3389/fneur.2024.1390524
Journal volume & issue
Vol. 15

Abstract

Read online

IntroductionAspiration pneumonia, a leading cause of mortality, poses an urgent challenge in contemporary society. Neuromuscular electrical stimulation (NMES) has been commonly used in dysphagia rehabilitation. However, given that NMES at motor threshold targets only specific muscles, it carries a potential risk of further compromising functions related to swallowing, respiration, and airway protection. Considering that the swallow motor pattern is orchestrated by the entire swallow pattern generator (the neural mechanism governing a sequence of swallow actions), a rehabilitation approach that centrally facilitates the entire circuit through sensory nerve stimulation is desirable. In this context, we propose a novel stimulation method using surface electrodes placed on the back to promote swallowing.MethodsThe efficacy of the proposed method in promoting swallowing was evaluated by electrically stimulating sensory nerves in the back or neck. Probabilistic stimulus was applied to either the back or neck of male and female rats. Swallows were evoked by an oral water stimulus, and electromyographic (EMG) activity of the mylohyoid, thyroarytenoid, and thyropharyngeus muscles served as the primary outcome measure.ResultsGaussian frequency stimulation applied to the skin surface of the thoracic back elicited significant increases in EMG amplitude of all three swallow-related muscles. Neck stimulation elicited a significant increase in EMG amplitude of the thyroarytenoid during swallow, but not the mylohyoid or thyropharyngeus muscles.DiscussionWhile the targeted thoracic spinal segments T9-T10 have been investigated for enhancing respiration, the promotion of swallowing through back stimulation has not been previously studied. Furthermore, this study introduces a new probabilistic stimulus based on Gaussian distribution. Probabilistic stimuli have been reported to excel in nerve stimulation in previous research. The results demonstrate that back stimulation effectively facilitated swallow more than neck stimulation and suggest potential applications for swallowing rehabilitation.

Keywords