Simulation on the Effect of Porosity in the Elastic Modulus of SiC Particle Reinforced Al Matrix Composites
Jorge E. Rivera-Salinas,
Karla M. Gregorio-Jáuregui,
José A. Romero-Serrano,
Alejandro Cruz-Ramírez,
Ernesto Hernández-Hernández,
Argelia Miranda-Pérez,
Víctor H. Gutierréz-Pérez
Affiliations
Jorge E. Rivera-Salinas
Catedrático CONACyT—Department of Plastics Transformation Processing, Centro de Investigación en Química Aplicada—CIQA, 25294 Saltillo, Coahuila, Mexico
Karla M. Gregorio-Jáuregui
Metallurgy and Materials Department, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas—ESIQIE, UPALM, 07738 México D.F., Mexico
José A. Romero-Serrano
Metallurgy and Materials Department, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas—ESIQIE, UPALM, 07738 México D.F., Mexico
Alejandro Cruz-Ramírez
Metallurgy and Materials Department, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas—ESIQIE, UPALM, 07738 México D.F., Mexico
Ernesto Hernández-Hernández
Department of Advanced Materials. Centro de Investigación en Química Aplicada—CIQA, 25294 Saltillo, Coahuila, Mexico
Argelia Miranda-Pérez
Corporación Mexicana de Investigación en Materiales S.A. de C.V., Ciencia y Tecnología—COMIMSA, 25290 Saltillo, Coahuila, Mexico
Víctor H. Gutierréz-Pérez
Profesional Specific Training Department. Instituto Politécnico Nacional—Unidad Profesional Interdisciplinaria de Ingeniería campus Zacatecas (UPIIZ), 98160 Zacatecas, Mexico
Although the porosity in Al-SiC metal matrix composites (MMC) can be diminished; its existence is unavoidable. The purpose of this work is to study the effect of porosity on Young’s modulus of SiC reinforced aluminum matrix composites. Finite element analysis is performed based on the unit cell and the representative volume element approaches. The reliability of the models is validated by comparing the numerical predictions against several experimental data ranging in low- and high-volume fractions and good agreement is found. It is found that despite the stress transfer from the soft matrix to the reinforcement remains effective in the presence of pores, there is a drop in the stress gathering capability of the particles and thus, the resulting effective elastic modulus of composite decreases. The elastic property of the composite is more sensitive to pores away the reinforcement. It is confirmed, qualitatively, that the experimentally reported in the literature decrease in the elastic modulus is caused by the presence of pores.