Biochemistry and Biophysics Reports (Sep 2022)
Revisiting misfolding propensity of serum amyloid A1: Special focus on the signal peptide region
Abstract
AA amyloidosis is the result of overproduction and aberrant processing of acute-phase serum amyloid A1 (SAA1) by hepatocytes. Proteolytic cleavage of SAA1 is believed to play a central role in AA amyloid formation. The SAA1 protein undergoes a cleavage of 18 residues consisting of the signal peptide at the N-terminal region. To better understand the mechanism behind systemic amyloidosis in the SAA1 protein, we studied the misfolding propensity of the signal peptide region. We first examined the signal peptide amino acid SAA derived from different animal species. A library of 16 peptides was designed to evaluate the propensity of aggregation. The amyloidogenic potential of each SAA1 signal peptide homolog was assessed using in silico Tango program, thioflavin T (ThT) fluorescence, transmission electron microscopy (TEM), and seeding with misfolded human SAA1 signal peptide. After 7 days of incubation, most of the SAA1 signal peptide fragments had the propensity to form fibrils at a concentration of 100 μM in 50 mM Tris buffer at 37 °C by TEM. All peptides were able to generate fibrils at a higher concentration, i.e 500 μM in 25 mM Tris buffer with 50% HFIP, by ThT. All SAA1 signal synthetic peptides designed from the different animal species had the propensity to misfold and form fibrils, particularly in species with low occurrence of systemic amyloidosis. The human SAA1 signal peptide region was capable to seed the SAA1 1–25 and 32–47 peptide regions. Characterizing fibrillar conformations are relevant for seeding intact and/or fragmented SAA, which may contribute, to the mechanism of protein misfolding. This research signifies the importance of the signal peptide region and its possible contribution to the misfolding of aggregation-prone proteins.