Minerals (May 2021)

X-ray Total Scattering Study of Phases Formed from Cement Phases Carbonation

  • Ana Cuesta,
  • Angeles G. De la Torre,
  • Miguel A. G. Aranda

DOI
https://doi.org/10.3390/min11050519
Journal volume & issue
Vol. 11, no. 5
p. 519

Abstract

Read online

Carbonation in cement binders has to be thoroughly understood because it affects phase assemblage, binder microstructure and durability performance of concretes. This is still not the case as the reaction products can be crystalline, nanocrystalline and amorphous. The characterisation of the last two types of components are quite challenging. Here, carbonation reactions have been studied in alite-, belite- and ye’elimite-containing pastes, in controlled conditions (3% CO2 and RH = 65%). Pair distribution function (PDF) jointly with Rietveld and thermal analyses have been applied to prove that ettringite decomposed to yield crystalline aragonite, bassanite and nano-gibbsite without any formation of amorphous calcium carbonate. The particle size of gibbsite under these conditions was found to be larger (~5 nm) than that coming from the direct hydration of ye’elimite with anhydrite (~3 nm). Moreover, the carbonation of mixtures of C-S-H gel and portlandite, from alite and belite hydration, led to the formation of the three crystalline CaCO3 polymorphs (calcite, aragonite and vaterite), amorphous silica gel and amorphous calcium carbonate. In addition to their PDF profiles, the thermal analyses traces are thoroughly analysed and discussed.

Keywords