Catalysts (Jul 2023)

Application of a Response Surface Method for the Optimization of the Hydrothermal Synthesis of Magnetic NiCo<sub>2</sub>O<sub>4</sub> Desulfurization Catalytic Powders

  • Yinke Zhang,
  • Lu Li,
  • Zihan Shang,
  • Hang Xu

DOI
https://doi.org/10.3390/catal13071119
Journal volume & issue
Vol. 13, no. 7
p. 1119

Abstract

Read online

In this study, nickel cobaltate (NiCo2O4) powders are employed as a catalyst in conjunction with persulfate for the development of a catalytic oxidation system to enhance fuel desulfurization. The hydrothermal synthesis conditions of NiCo2O4 powders, which significantly influenced the desulfurization efficiency, were optimized using a response surface methodology with a Box–Behnken design. These conditions were ranked in the following order: calcination temperature > hydrothermal temperature > calcination time > hydrothermal time. Through the optimization process, the ideal preparation conditions were determined as follows: a hydrothermal temperature of 143 °C, hydrothermal time of 6.1 h, calcination temperature of 330 °C, and calcination time of 3.7 h. Under these optimized conditions, the predicted desulfurization rate was approximately 85.8%. The experimental results closely matched the prediction, yielding a desulfurization rate of around 84%, with a minimal error of only 2.1%. To characterize the NiCo2O4 powders prepared under the optimal conditions, XRD, SEM, and TEM analyses were conducted. The analysis revealed that the microscopic morphology of NiCo2O4 exhibited a rectangular sheet structure, with an average particle size of 20 nm. Additionally, fan-shaped NiCo2O4 particles were observed as a result of linear and bundle agglomerations. Thus, this work is innovative in its ability to synthesize nano-catalysts using hydrothermal synthesis in a controllable manner and establishing a correlation between the hydrothermal synthesis conditions and catalytic activity.

Keywords