China Foundry (Aug 2012)

Cellular automaton simulation of peritectic solidification of a C-Mn steel

  • Su Bin,
  • Han Zhiqiang,
  • Liu Baicheng

Journal volume & issue
Vol. 9, no. 3
pp. 221 – 225

Abstract

Read online

A cellular automaton model has been developed to simulate the microstructure evolution of a C-Mn steel during the peritectic solidification. In the model, the thermodynamics and solute diffusion of multi-component systems were taken into account by using Thermo-Calc and Dictra software package. Scheil model was used to predict the relationship between the solid fraction and the temperature, which was used to calculate the movement velocity of the L/δ and the L/γ interfaces. A mixed-mode model in multi-component systems was adopted to calculate the movement velocity of the δ/γ interface. To validate the cellular automaton model, the variation of manganese distribution was studied. The simulated results showed a good agreement with experimental results reported in literatures. Meanwhile, the simulated growth kinetics of peritectic solidification agreed well with the experimental results obtained using confocal scanning laser microscopy (CSLM). The model can simulate the growth kinetics of the peritectic solidification and the distribution of concentrations of all components in grains.

Keywords