Multimodal Technologies and Interaction (Apr 2019)
Tell Them How They Did: Feedback on Operator Performance Helps Calibrate Perceived Ease of Use in Automated Driving
Abstract
The development of automated driving will profit from an agreed-upon methodology to evaluate human−machine interfaces. The present study examines the role of feedback on interaction performance provided directly to participants when interacting with driving automation (i.e., perceived ease of use). In addition, the development of ratings itself over time and use case specificity were examined. In a driving simulator study, N = 55 participants completed several transitions between Society of Automotive Engineers (SAE) level 0, level 2, and level 3 automated driving. One half of the participants received feedback on their interaction performance immediately after each use case, while the other half did not. As expected, the results revealed that participants judged the interactions to become easier over time. However, a use case specificity was present, as transitions to L0 did not show effects over time. The role of feedback also depended on the respective use case. We observed more conservative evaluations when feedback was provided than when it was not. The present study supports the application of perceived ease of use as a diagnostic measure in interaction with automated driving. Evaluations of interfaces can benefit from supporting feedback to obtain more conservative results.
Keywords