Acta Pharmaceutica Sinica B (Apr 2025)
Obesity-driven oleoylcarnitine accumulation in tumor microenvironment promotes breast cancer metastasis-like phenotype
Abstract
Obesity is a significant risk factor for cancer and is associated with breast cancer metastasis. Nevertheless, the mechanism by which alterations in systemic metabolism affect tumor microenvironment (TME) and consequently influence tumor metastasis remains inadequately understood. Herein, we found that perturbations in circulating metabolites induced by obesity promote metastasis-like phenotypes in breast cancer. Oleoylcarnitine (OLCarn) concentrations were elevated in the serum of obese mice and humans. Administration of exogenous OLCarn induces metastasis-like characteristics in breast cancer cells. Mechanistically, OLCarn directly interacts with the Arg176 site of adenylate cyclase 10 (ADCY10), leading to the activation of ADCY10 and enhancement of cAMP production. Mutations at Arg176 prevent OLCarn from binding to ADCY10, disrupting the ADCY10-mediated activation of cyclic adenosine monophosphate (cAMP) signaling pathway. This activation promotes transcription factor 4 (TCF4)-dependent kinesin family member C1 (KIFC1) transcription, thereby driving breast cancer metastasis. Conversely, the neutralization of both ADCY10 and KIFC1 through knockdown or pharmacological inhibition abrogates the oncogenic effects mediated by OLCarn. Hence, obesity-induced systemic environmental changes lead to the aberrant accumulation of OLCarn within the TME, making it a potential therapeutic target and biomarker for breast cancer.