Discussiones Mathematicae Graph Theory (Aug 2020)
Trees with Distinguishing Index Equal Distinguishing Number Plus One
Abstract
The distinguishing number (index) D(G) (D′ (G)) of a graph G is the least integer d such that G has an vertex (edge) labeling with d labels that is preserved only by the trivial automorphism. It is known that for every graph G we have D′ (G) ≤ D(G) + 1. In this note we characterize finite trees for which this inequality is sharp. We also show that if G is a connected unicyclic graph, then D′ (G) = D(G).
Keywords