Инфекция и иммунитет (Nov 2022)

<i>CDR1, CDR2, MDR1</i> and <i>ERG11</i> expression in azole resistant <i>Сandida albicans</i> isolated from HIV-infected patients in city of Moscow

  • A. D. Voropaev,
  • D. A. Yekaterinchev,
  • Y. N. Urban,
  • V. V. Zverev,
  • Yu. V. Nesvizhsky,
  • E. A. Voropaeva,
  • E. I. Likhanskaya,
  • M. S. Afanasiev,
  • S. S. Afanasiev

DOI
https://doi.org/10.15789/2220-7619-CCM-1931
Journal volume & issue
Vol. 12, no. 5
pp. 929 – 937

Abstract

Read online

Candida fungi are common opportunistic microorganisms capable of causing infections of various localization, as well as life-threatening conditions in immunocompromised patients, such as HIV-infected individuals, oncology patients, subjects undergoing HSCT, which number has been steadily increasing in recent years. In addition, resistance to anti-fungal drugs has been spreading as well. Naturally sensitive to azoles, C. albicans possess a variety of mechanisms of acquired resistance, including efflux transporters and target protein-encoding gene amplification. This study was conducted to assess a prevalence of such mechanisms in the isolates sample obtained from HIV-infected patients in the Moscow region of the Russian Federation, characterize a relationship between these mechanisms and patterns of developing drug resistance. 18 strains of C. albicans resistant to fluconazole and voriconazole were isolated from HIV-infected patients with recurrent oropharyngeal candidiasis in the Moscow region. The expression levels of the ERG11, MDR1, CDR1, CDR2 genes involved in the formation of acquired azole resistance were measured using quantitative PCR, the 2CT method with ACT and PMA genes as control genes and reference values of sensitive isolates. Expression levels exceeding the average values of sensitive isolates by more than 3 standard deviations were considered significantly elevated. In most of the isolates, elevated levels of CDR1 and CDR2 gene expression were found: 89% and 78%, respectively. The expression level of the MDR1 gene was increased only in 28% of cases. ERG11 expression levels were significantly elevated in 78% of the isolates. Expression levels of all resistance genes studied were significantly increased in 4 strains. In this sample of C. albicans isolates, acquired resistance is mainly associated with efflux vectors encoded by the CDR1 and CDR2 genes. Also, in most isolates, an increased expression level for the azole target protein gene ERG11 was detected. The expression level of the efflux transporter gene MDR1 was increased in the smallest number of samples. It is also impossible to exclude a potential role of other mechanisms in developing acquired resistance, such as mutations in the ERG11 gene. It can be assumed that the identified mechanisms of resistance result from long-term, widespread, and sometimes uncontrolled use of azoles, including those in treatment and prevention of candidiasis in HIV-infected patients.

Keywords