Geomatics, Natural Hazards & Risk (Dec 2023)
Real-time flash flood forecasting approach for development of early warning systems: integrated hydrological and meteorological application
Abstract
AbstractThis study proposes an integrated hydrometeorological modelling framework approach and methodology for flash flood Early Warning Systems in the Chugoku region of Japan. Unprecedented rainfall-induced hydrometeorological disasters and flash floods are increasingly occurring worldwide. Comprehensive efforts are conducted to simultaneously combine multiple disciplines into integrated modelling framework approaches to reduce disaster resilience. This enables more accurate hindcasts, reanalyses, real-time forecasts or nowcasts for flash floods. This study integrates proposed hydrological calibration approach with meteorological input. Two real-time rainfall forecasts by the Weather Research and Forecasting model forced by the Atmospheric Reanalysis v5 (ERA5) and the Japanese 55-year Reanalysis (JRA55) were used as input data to the hydrological model ensemble parameterized previously. This approach was applied to seven major rivers to evaluate river discharges real-time forecasts accuracy during the Heavy Rainfall Event of July 2018. Long lead-times of up to 29 h with a satisfactory reproducible range of Nash-Sutcliffe Efficiency were obtained using both meteorological forecast for all rivers cumulatively. This indicates that the proposed integrated hydrometeorological approach enables accurate flash flood real-time forecasting for this event. Similarly, the joint hydrometeorological approach enables framework for development of real-time flash food forecasting application in Japan and presumably worldwide.
Keywords