Cell Reports (May 2018)
A Glutamate Homeostat Controls the Presynaptic Inhibition of Neurotransmitter Release
Abstract
Summary: We have interrogated the synaptic dialog that enables the bi-directional, homeostatic control of presynaptic efficacy at the glutamatergic Drosophila neuromuscular junction (NMJ). We find that homeostatic depression and potentiation use disparate genetic, induction, and expression mechanisms. Specifically, homeostatic potentiation is achieved through reduced CaMKII activity postsynaptically and increased abundance of active zone material presynaptically at one of the two neuronal subtypes innervating the NMJ, while homeostatic depression occurs without alterations in CaMKII activity and is expressed at both neuronal subtypes. Furthermore, homeostatic depression is only induced through excess presynaptic glutamate release and operates with disregard to the postsynaptic response. We propose that two independent homeostats modulate presynaptic efficacy at the Drosophila NMJ: one is an intercellular signaling system that potentiates synaptic strength following diminished postsynaptic excitability, while the other adaptively modulates presynaptic glutamate release through an autocrine mechanism without feedback from the postsynaptic compartment. : Homeostatic mechanisms stabilize synaptic strength, but the signaling systems remain enigmatic. Li et al. suggest the existence of a homeostat operating at the Drosophila neuromuscular junction that responds to excess glutamate through an autocrine mechanism to adaptively inhibit presynaptic neurotransmitter release. This system parallels forms of plasticity at central synapses. Keywords: homeostatic synaptic plasticity, glutamate homeostasis, synaptic depression, Drosophila neuromuscular junction