Giant (Aug 2024)

Molecular packing regulation of dopant-free hole transport polymers for efficient perovskite solar cells

  • Hang Liu,
  • Yuping Gao,
  • Yufei Xin,
  • Hao Zhang,
  • Yu Zou,
  • Xiyue Dong,
  • Yanhong Lu,
  • Qiang Fu,
  • Yongsheng Liu

Journal volume & issue
Vol. 19
p. 100302

Abstract

Read online

Spiro-OMeTAD is a primary hole transport material (HTM) employed in most state-of-the-art regular perovskite solar cells (PSCs). The essential reliance on hygroscopic ionic dopants to enhance the conductivity and mobility of Spiro-OMeTAD has dramatically compromised the stability of PSCs. Here, we demonstrated excellent photovoltaic performance of PSCs by developing two dopant-free polymers, namely L1 and L2, using thieno[3,2-b]thiophene as a building block. It is found that the n-hexyl-modified thiophene side chains endow the polymer L2 with favorable crystallinity, unique self-assembly behavior, and a preferable face-on stacking orientation. After the addition of a small amount (10 %) of PM6 to create a polymer alloy named LPA, the above properties were further improved, and the resulting film exhibited a distinct fibrous morphology, resulting in increased hole mobility and effective defect passivation. Consequently, PSCs employing LPA as a dopant-free HTM afforded a high efficiency of 23.81 %. Importantly, LPA-based PSCs exhibit significantly enhanced operational stability with a T80 lifetime of 1572 h at 55 °C. This work provides a crucial guideline for the design of dopant-free polymers, thereby advancing the practical application of PSCs.

Keywords