Biochemistry and Biophysics Reports (Jul 2022)
Differential expression profiles of miRNA in the serum of sarcopenic rats
Abstract
As the geriatric population and life expectancy increase, the interest in preventing geriatric diseases, such as sarcopenia, is increasing. However, the causes of sarcopenia are unclear, and current diagnostic methods for sarcopenia are unreliable. We hypothesized that the changes in the expression of certain miRNAs may be associated with the pathophysiology of sarcopenia. Herein, we analyzed the miRNA expression profiles in the blood of young (3-months-old) healthy rats, old sarcopenic (17-months-old) rats, and age-matched (17-months-old) control rats. The changes in miRNA expression levels were analyzed using Bowtie 2 software. A total of 523 miRNAs were detected in the rat serum. Using scatter plots and clustering heatmap data, we found 130 miRNAs that were differentially expressed in sarcopenic rats (>2-fold change) compared to the expression in young healthy and age-matched control rats. With a threshold of >5-fold change, we identified 14 upregulated miRNAs, including rno-miR-133b-3p, rno-miR-133a-3p, rno-miR-133c, rno-miR-208a-3p, and rno-miR434-5p among others in the serum of sarcopenic rats. A protein network map based on these 14 miRNAs identified the genes involved in skeletal muscle differentiation, among which Notch1, Egr2, and Myocd represented major nodes. The data obtained in this study are potentially useful for the early diagnosis of sarcopenia and for the identification of novel therapeutic targets for the treatment and/or prevention of sarcopenia.