Energies (Jan 2020)

Optimizing Simulation and Analysis of Automated Top-Coal Drawing Technique in Extra-Thick Coal Seams

  • Qunlei Zhang,
  • Ruifu Yuan,
  • Shen Wang,
  • Dongyin Li,
  • Huamin Li,
  • Xuhe Zhang

DOI
https://doi.org/10.3390/en13010232
Journal volume & issue
Vol. 13, no. 1
p. 232

Abstract

Read online

A particle element approach based on continuum-discontinuum element method (CDEM) is applied to optimize the automated top-coal drawing techniques in extra-thick coal seams. Numerical models with 100 drawing openings are created according to the field engineering geological conditions of Tongxin coal mine in China. An automated coal drawing control approach in numerical modelling based on time criterion is proposed. The rock mixed rate, top-coal recovery rate and the variance of the drawn top coal amount are counted and set as the statistical indicators to evaluate the top-coal drawing techniques. The traditional top-coal drawing criterion, “rocks appear, close the opening”, leads to low recovery of top coal and waste of coal resources in extra-thick coal seams, significantly weakening the transport stability and efficiency of the scraper conveyer. A three-round unequal time top-coal drawing technique is proposed for automated top-coal drawing. Three drawing openings, corresponding to the three top-coal drawing rounds respectively, are working at the same time; in each round, the top-coal drawing sequence is from the first drawing opening at one end of the working face to last drawing opening at another end; the drawing time of each round is not equal and increases with the round number. The numerical inversion approach of iteration steps can be used for real top-coal drawing time estimation and automated drawing process design to achieve a better top coal drawing effect, while the exact time for each drawing round still needs to be corrected by engineering practice.

Keywords