MATEC Web of Conferences (Jan 2019)

A new active asymmetry monitoring and control technique applied to critical aircraft flap control system failures

  • Belmonte Dario,
  • Dalla Vedova Matteo Davide Lorenzo,
  • Quattrocchi Gaetano

DOI
https://doi.org/10.1051/matecconf/201930404011
Journal volume & issue
Vol. 304
p. 04011

Abstract

Read online

Asymmetry limitation requirements between left and right wing flap surfaces play an important role in the design of the implementation of the secondary flight control system of modern airplanes. In fact, especially in the case of sudden breaking of one of the torsion bars of the flap transmission line, the huge asymmetries that can rapidly develop could compromise the lateral-directional controllability of the whole aircraft (up to cause catastrophic occurrences). Therefore, in order to guarantee the aircraft safety (especially during take-off and landing flight phase in which the effects of asymmetries could generate uncontrollable aircraft attitudes), it is mandatory to timely detect and neutralize these asymmetries. The current monitoring techniques generally evaluate the differential angular position between left and right surfaces and, in most the events, limit the Flaps Control System (FCS) asymmetries, but in severe fault conditions (e.g. under very high aerodynamic loads), unacceptable asymmetries could be generated, compromising the controllability of the aircraft. To this purpose, in this paper the authors propose a new active monitoring and control technique capable of detecting the increasing angular error between the different flap surfaces and that, after stopping the whole actuation system, acts on the portion of the actuation line still connected to the PDU to minimize the FCS asymmetries.