Science and Technology of Nuclear Installations (Jan 2014)

The Effect of Beam Intensity on Temperature Distribution in ADS Windowless Lead-Bismuth Eutectic Spallation Target

  • Jie Liu,
  • Lei Gao,
  • Wen-qiang Lu

DOI
https://doi.org/10.1155/2014/984971
Journal volume & issue
Vol. 2014

Abstract

Read online

The spallation target is the component coupling the accelerator and the reactor and is regarded as the “heart” of the accelerator driven system (ADS). Heavy liquid metal lead-bismuth eutectic (LBE) is served as core coolant and spallation material to carry away heat deposition of spallation reaction and produce high flux neutron. So it is very important to study the heat transfer process in the target. In this paper, the steady-state flow pattern has been numerically obtained and taken as the input for the nuclear physics calculation, and then the distribution of the extreme large power density of the heat load is imported back to the computational fluid dynamics as the source term in the energy equation. Through the coupling, the transient and steady-state temperature distribution in the windowless spallation target is obtained and analyzed based on the flow process and heat transfer. Comparison of the temperature distribution with the different beam intensity shows that its shape is the same as broken wing of the butterfly. Nevertheless, the maximum temperature as well as the temperature gradient is different. The results play an important role and can be applied to the further design and optimization of the ADS windowless spallation target.