Journal of Medical Physics (Jan 2022)
Design and evaluation of structural shielding of a typical radiotherapy facility using egsnrc monte carlo code
Abstract
Purpose: This study aimed to evaluate the shielding integrity of a typical radiotherapy facility using the Monte Carlo (MC) method. Materials and Methods: EGSnrc MC code was used to design a radiotherapy bunker with appropriate materials and thicknesses. A concrete density of 2.36 g/cm3 was used as a shielding material for primary and secondary barriers. The lead slab was used in the entrance door. The complex geometries of the bunker were modeled by using the egs++ application code embedded in the software. Phase-space generated from a linac machine built with BEAMnrc codes was used as a source of 18 MV X-ray beam set at 100 cm source–surface distance with a field size of 40 cm × 40 cm. Energy deposited in each geometrical region was evaluated and analyzed. Results: Energy deposited at the entrance door, supervised and controlled areas were found to be approximately 0%. No significant difference in the energy deposition on the geometries was observed when the gantry angles were set at either 90° or 270° (P = 1). Conclusion: The findings in this study revealed that the EGSnrc MC code can be used as a veritable tool in the design and evaluation of structural shielding efficiency in a radiotherapy facility.
Keywords