Machines (Nov 2023)

G-DMD: A Gated Recurrent Unit-Based Digital Elevation Model for Crop Height Measurement from Multispectral Drone Images

  • Jinjin Wang,
  • Nobuyuki Oishi,
  • Phil Birch,
  • Bao Kha Nguyen

DOI
https://doi.org/10.3390/machines11121049
Journal volume & issue
Vol. 11, no. 12
p. 1049

Abstract

Read online

Crop height is a vital indicator of growth conditions. Traditional drone image-based crop height measurement methods primarily rely on calculating the difference between the Digital Elevation Model (DEM) and the Digital Terrain Model (DTM). The calculation often needs more ground information, which remains labour-intensive and time-consuming. Moreover, the variations of terrains can further compromise the reliability of these ground models. In response to these challenges, we introduce G-DMD, a novel method based on Gated Recurrent Units (GRUs) using DEM and multispectral drone images to calculate the crop height. Our method enables the model to recognize the relation between crop height, elevation, and growth stages, eliminating reliance on DTM and thereby mitigating the effects of varied terrains. We also introduce a data preparation process to handle the unique DEM and multispectral image. Upon evaluation using a cotton dataset, our G-DMD method demonstrates a notable increase in accuracy for both maximum and average cotton height measurements, achieving a 34% and 72% reduction in Root Mean Square Error (RMSE) when compared with the traditional method. Compared to other combinations of model inputs, using DEM and multispectral drone images together as inputs results in the lowest error for estimating maximum cotton height. This approach demonstrates the potential of integrating deep learning techniques with drone-based remote sensing to achieve a more accurate, labour-efficient, and streamlined crop height assessment across varied terrains.

Keywords