ESAIM: Proceedings and Surveys (Jan 2023)
Efficient approximations of the fisher matrix in neural networks using kronecker product singular value decomposition
Abstract
We design four novel approximations of the Fisher Information Matrix (FIM) that plays a central role in natural gradient descent methods for neural networks. The newly proposed approximations are aimed at improving Martens and Grosse’s Kronecker-factored block diagonal (KFAC) one. They rely on a direct minimization problem, the solution of which can be computed via the Kronecker product singular value decomposition technique. Experimental results on the three standard deep auto-encoder benchmarks showed that they provide more accurate approximations to the FIM. Furthermore, they outperform KFAC and state-of-the-art first-order methods in terms of optimization speed.