Mathematics (Jul 2023)
Exact Null Controllability of a Wave Equation with Dirichlet–Neumann Boundary in a Non-Cylindrical Domain
Abstract
In this paper, by applying the Hilbert Uniqueness Method in a non-cylindrical domain, we prove the exact null controllability of one wave equation with a moving boundary. The moving endpoint of this wave equation has a Neumann-type boundary condition, while the fixed endpoint has a Dirichlet boundary condition. We derived the exact null controllability and obtained an exact controllability time of the wave equation.
Keywords