We present a new microscope integrating super-resolved imaging using structured illumination microscopy (SIM) with wide-field optically sectioned fluorescence lifetime imaging (FLIM) to provide optical mapping of molecular function and its correlation with biological nanostructure below the conventional diffraction limit. We illustrate this SIM + FLIM capability to map FRET readouts applied to the aggregation of discoidin domain receptor 1 (DDR1) in Cos 7 cells following ligand stimulation and to the compaction of DNA during the cell cycle.