MATEC Web of Conferences (Jan 2019)
Structural analysis using three-component acceleration time histories caused by shallow crustal fault earthquakes with a maximum magnitude of 7 Mw
Abstract
Research on the improvement of Indonesian seismic hazard maps has already been carried out by the National Center for Earthquake Studies in 2017. One important global data obtained from this research related with all earthquake sources mechanism which might be used for building design and evaluation. Based on this research there are two important and closest earthquake sources to Semarang, Lasem fault (strike slip mechanism) and Semarang fault (reverse mechanism). This paper presents the dynamic structural evaluations of the hospital building (approximately 49 meters height) located in Semarang, Indonesia, by conducting two seismic load functions, two-component surface spectral acceleration (X and Y directions) developed from Indonesian Seismic Code SNI:1726-2012 and three-component (North-South, East-West and Vertical) of surface acceleration time histories. All acceleration time histories were modified from three earthquake events which represents Semarang fault earthquake scenarios and developed from earthquake events with magnitude from 6.3 to 6.9 Mw and the maximum distance of building to earthquake epicentre 15 Km. Based on the floor deformation and the drift ratio results calculated using dynamic analysis, the building is predicted has the capability on resisting earthquake scenarios up to a maximum magnitude 7 Mw with minimum epicentre distance 10 Km.