Scientific Reports (Jul 2024)
Real-Time multifaceted artificial intelligence vs In-Person instruction in teaching surgical technical skills: a randomized controlled trial
Abstract
Abstract Trainees develop surgical technical skills by learning from experts who provide context for successful task completion, identify potential risks, and guide correct instrument handling. This expert-guided training faces significant limitations in objectively assessing skills in real-time and tracking learning. It is unknown whether AI systems can effectively replicate nuanced real-time feedback, risk identification, and guidance in mastering surgical technical skills that expert instructors offer. This randomized controlled trial compared real-time AI feedback to in-person expert instruction. Ninety-seven medical trainees completed a 90-min simulation training with five practice tumor resections followed by a realistic brain tumor resection. They were randomly assigned into 1-real-time AI feedback, 2-in-person expert instruction, and 3-no real-time feedback. Performance was assessed using a composite-score and Objective Structured Assessment of Technical Skills rating, rated by blinded experts. Training with real-time AI feedback (n = 33) resulted in significantly better performance outcomes compared to no real-time feedback (n = 32) and in-person instruction (n = 32), .266, [95% CI .107 .425], p < .001; .332, [95% CI .173 .491], p = .005, respectively. Learning from AI resulted in similar OSATS ratings (4.30 vs 4.11, p = 1) compared to in-person training with expert instruction. Intelligent systems may refine the way operating skills are taught, providing tailored, quantifiable feedback and actionable instructions in real-time.