Infectious Diseases in Obstetrics and Gynecology (Jan 2009)

Pretreatment with Pancaspase Inhibitor (Z-VAD-FMK) Delays but Does Not Prevent Intraperitoneal Heat-Killed Group B Streptococcus-Induced Preterm Delivery in a Pregnant Mouse Model

  • Ozlem Equils,
  • Chantelle Moffatt-Blue,
  • Tomo-o Ishikawa,
  • Charles F. Simmons,
  • Vladimir Ilievski,
  • Emmet Hirsch

DOI
https://doi.org/10.1155/2009/749432
Journal volume & issue
Vol. 2009

Abstract

Read online

Caspases and apoptosis are thought to play a role in infection-associated preterm-delivery. We have shown that in vitro treatment with pancaspase inhibitor Z-VAD-FMK protects trophoblasts from microbial antigen-induced apoptosis. Objective. To examine whether in vivo administration of Z-VAD-FMK would prevent infection-induced preterm-delivery. Methods. We injected 14.5 day-pregnant-mice with heat-killed group B streptococcus (HK-GBS). Apoptosis within placentas and membranes was assessed by TUNEL staining. Calpain expression and caspase-3 activation were assessed by immunohistochemistry. Preterm-delivery was defined as expulsion of a fetus within 48 hours after injection. Results. Intrauterine (i.u.) or intraperitoneal (i.p.) HK-GBS injection led to preterm-delivery and induced apoptosis in placentas and membranes at 14 hours. The expression of calpain, a caspase-independent inducer of apoptosis, was increased in placenta. Treatment with the specific caspase inhibitor Z-VAD-FMK (i.p.) prior to HK-GBS (i.p.) delayed but did not prevent preterm-delivery. Conclusion. Caspase-dependent apoptosis appears to play a role in the timing but not the occurrence of GBS-induced preterm delivery in the mouse.