Nanomaterials (Aug 2018)
Synthesis of Amorphous InSb Nanowires and a Study of the Effects of Laser Radiation and Thermal Annealing on Nanowire Crystallinity
Abstract
Although various synthesis and characterization strategies have been employed for the synthesis of crystalline nanowires, there is very little work done on development of low-dimensional amorphous semiconductors. This paper presents a simple strategy to grow amorphous InSb (a-InSb) nanowires (NWs) in a chemical vapor deposition (CVD) system. The NWs were grown on Si substrate coated with indium film and the lack of crystallinity in the as-grown stoichiometric NWs was ascertained by Raman spectroscopy and electron transport measurements. A model proposed to explain the amorphous NW growth mechanism takes into account the fact that NW growth was carried out at the high temperature ramp-up rate of 75 ∘C/min. This high rate is believed to affect the growth kinematics and determine the arrangement of atoms in the growing NW. Raman spectrum of the as-grown sample shows a broad peak around 155 cm−1, indicative of the presence of high density of homopolar Sb-Sb bonds in the amorphous matrix. It was also found that high intensity laser light induces localized crystallization of the NW, most likely due to radiation-stimulated diffusion of defects in a-InSb. The nonlinear trend of the current-voltage characteristics for individually contacted a-InSb NWs was analyzed to prove that the non-linearity is not induced by Schottky contacts. At high bias fields, space charge limited conduction was the proposed electron transport mechanism. Post-growth annealing of the as-grown a-InSb NWs was found to be very effective in causing the NWs to undergo a phase transition from amorphous to crystalline.
Keywords