Frontiers in Immunology (Sep 2020)
MicroRNAs of Human Herpesvirus 6A and 6B in Serum and Cerebrospinal Fluid of Multiple Sclerosis Patients
Abstract
Human herpesvirus-6A (HHV-6A) and −6B (HHV-6B) might be involved in the etiopathogenesis of multiple sclerosis (MS), especially the HHV-6A. We aim at assessing, for the first time in the scientific literature, the HHV-6A/B microRNAs in MS patients. We analyzed the miRNAs of HHV-6A: miR-U86, and −6B: hhv6b-miR-Ro6-1, −2, −3-3p, −3-5p, and −4 in paired samples of serum and CSF of 42 untreated MS patients and 23 patients with other neurological diseases (OND), using Taqman MicroRNA Assays. Intrathecal HHV-6A/B antibody production and anti-HHV-6A/B IgG/IgM levels in serum were measured. MS clinical data were available. We detected the following miRNAs: hhv6b-miR-Ro6-2 (serum: MS:97.7%, OND:95.7%; CSF: MS:81%, OND:86.4%), 3-3p (serum: MS:4.8%, OND:0%; CSF: MS:2.4%, OND:4.5%), −3-5p (serum: MS:95.2%, OND:91.3%; CSF: MS:50%, OND:54.5%), and miR-U86 (serum: MS:54.8%, OND:47.8%; CSF: MS:11.9%, OND:9.1%). In the serum of the whole population (MS and OND patients) we found a significant correlation between the levels of hhv6b-miR-Ro6-2 and −3-5p (Spearman r = 0.839, pcorr = 3E-13), −2 and miR-U86 (Spearman r = 0.578, pcorr = 0.001) and −3-5p and miR-U86 (Spearman r = 0.698, pcorr = 1.34E-5); also in the CSF, between hhv6b-miR-Ro6-2 and −3-5p (Spearman r = 0.626, pcorr = 8.52E-4). These correlations remained statistically significant when both populations were considered separately. The anti-HHV-6A/B IgG levels in CSF and the intrathecal antibody production in positive MS patients for hhv6b-miR-Ro6-3-5p were statistically significant higher than in the negative ones (pcorr = 0.006 and pcorr = 0.036). The prevalence of miR-U86 (30.8%) in the CSF of individuals without gadolinium-enhancing lesions was higher (p = 0.035) than in the ones with these lesions (0%); however, the difference did not withstand Bonferroni correction (pcorr = 0.105). We propose a role of HHV-6A/B miRNAs in the maintenance of the viral latency state. Further investigations are warranted to validate these results and clarify the function of these viral miRNAs.
Keywords