Symmetry (Aug 2024)
A Novel Discrete Linear-Exponential Distribution for Modeling Physical and Medical Data
Abstract
In real-life data, count data are considered more significant in different fields. In this article, a new form of the one-parameter discrete linear-exponential distribution is derived based on the survival function as a discretization technique. An extensive study of this distribution is conducted under its new form, including characteristic functions and statistical properties. It is shown that this distribution is appropriate for modeling over-dispersed count data. Moreover, its probability mass function is right-skewed with different shapes. The unknown model parameter is estimated using the maximum likelihood method, with more attention given to Bayesian estimation methods. The Bayesian estimator is computed based on three different loss functions: a square error loss function, a linear exponential loss function, and a generalized entropy loss function. The simulation study is implemented to examine the distribution’s behavior and compare the classical and Bayesian estimation methods, which indicated that the Bayesian method under the generalized entropy loss function with positive weight is the best for all sample sizes with the minimum mean squared errors. Finally, the discrete linear-exponential distribution proves its efficiency in fitting discrete physical and medical lifetime count data in real-life against other related distributions.
Keywords