Nuclear Engineering and Technology (Feb 2024)
Numerical simulation and experimental study of quasi-periodic large-scale vortex structures in rod bundle lattices
Abstract
Study of flow behavior within rod bundles has been an active topic. Surface modification technologies are important parts of the design of the fourth generation reactor, which can increase the strength of the secondary flow within the rod bundle lattices. Quasi-periodic large-scale vortex structure (QLVS) is introduced by arranging micro ribs on the surface of rod bundles, which enhanced the scale of the secondary flow between the rod bundle lattices. Using computational fluid dynamics (CFD) and water experiments, the flow field distribution and drag coefficient of the rod-bundle lattices are studied. The secondary flow between the micro-ribbed rod-bundle lattice is significantly enhanced compared to the standard rod-bundle lattice. The numerical simulation results agree well with the experimental results.