Scientific Reports (Nov 2022)

Exploration of a novel and efficient source for production of bacterial nanocellulose, bioprocess optimization and characterization

  • Noura El-Ahmady El-Naggar,
  • Sahar E. El-Malkey,
  • M. A. Abu-Saied,
  • A. B. Abeer Mohammed

DOI
https://doi.org/10.1038/s41598-022-22240-x
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 22

Abstract

Read online

Abstract The demand for bacterial nanocellulose is expected to rise in the coming years due to its wide usability in many applications. Hence, there is a continuing need to screen soil samples from various sources to isolate a strain with a high capacity for bacterial nanocellulose production. Bacillus sp. strain SEE-12, which was isolated from a soil sample collected from Barhiem, Menoufia governorate, Egypt, displayed high BNC production under submerged fermentation. Bacillus sp. strain SEE-12 was identified as Bacillus tequilensis strain SEE-12. In static cultures, BNC was obtained as a layer grown in the air liquid interface of the fermentation medium. The response surface methodology was used to optimise the process parameters. The highest BNC production (22.8 g/L) was obtained using 5 g/L peptone, 5 g/L yeast extract, 50%, v/v Cantaloupe juice, 5 g/L Na2HPO4, 1.5 g/L citric acid, pH 5, medium volume of 100 mL/250 mL conical flask, inoculum size 5%, v/v, temperature 37 °C and incubation time 6 days. The BNC was purified and characterized by scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM).