Remote Sensing (Apr 2025)
Integration of Optical and Microwave Satellite Data for Monitoring Vegetation Status in Sorghum Fields
Abstract
Despite the abundance of available studies on optical and microwave methods devoted to investigating agricultural crop conditions, there is a lack of research that explores the integration between microwave and optical data and the link between photosynthetic activity, measured by PRI (photochemical reflectance index), and vegetation water content, detected by radar sensors. In particular, there is a lack of vision that links these measures to better understand how plants react and adapt to possible water stress conditions. Most of the existing research tends to treat optical and microwave information separately, without investigating how the integration of these techniques can provide a more complete and accurate understanding of the research topic, corroborated by ground data. In this paper, an integrated approach using microwave and optical satellite data, respectively acquired by Sentinel-1 (S-1) and Sentinel-2 (S-2), was presented for monitoring vegetation status. Experimental data and electromagnetic models have been combined to relate backscattering from S-1 and optical indices from S-2 to plant conditions, which were evaluated by measuring PRI, plant water content (PWC), and soil water content. Field data were collected in two sorghum fields close to Florence in Tuscany (Central Italy) during the summers of 2022 and 2023. The results show significant correlations between microwave and optical data with respect to field measurements, highlighting the potential of remote sensing techniques for agricultural monitoring and management, also in response to climate change. Determination coefficients of R2 = 0.51 between PRI and PWC, where PWC is retrieved by S-1, and R2 = 0.73 between PSRI (plant senescence reflectance index) and PRI were obtained.
Keywords