Energies (Dec 2022)
Study on Characteristics of Overburden Strata Structure above Abandoned Gob of Shallow Seams—A Case Study
Abstract
To understand the change in overburden structure after coal seam group mining, we investigated the overburden characteristics and bearing capacity of abandoned coal mines in a coal seam group. We provide a theoretical basis for the construction and utilization of a coal mining subsidence area under a complex geological environment. This paper takes the construction project of Zhongtie Huizhi Square in Zhangqiu District, Jinan City, Shandong Province as the engineering background. According to the occurrence conditions of the study area, theoretical analysis, similar simulation, numerical simulation, and engineering practice verification are used. The overburden structure characteristics of abandoned mines in a shallow-buried coal seam group were studied. The results show that the development height of the water-carrying fractured zone after the mining of the 3#, 4#, and 9# coal seams is 17 m, 19.5 m, and 27.1 m, respectively, which shows that the height of water flow in the fractured zone is proportional to the buried depth of the coal seam after coal seam mining. After the model is set aside for three months, the degree of development of the residual fracture in the goaf is analyzed, and the distribution law of residual porosity in the longwall old goaf of a shallow-buried multiple coal seam is obtained. The development rate of residual fissures on both sides of the goaf is between 20.31% and 42.31%. The residual fracture development rate in the middle is relatively small, being between 8.21% and 18.53%. We comprehensively analyzed the characteristics of overlying strata in the abandoned mine under actual stratum conditions, and compared the empirical calculation results, theoretical research, similar simulation, and numerical simulation results in the specification with the engineering practice to prove the reliability of the research.
Keywords