Antioxidants (Apr 2024)

Effects of Phytosterol Ester Supplementation on Egg Characteristics, Eggshell Ultrastructure, Antioxidant Capacity, Liver Function and Hepatic Metabolites of Laying Hens during Peak Laying Period

  • Wenzi Wu,
  • Xin Ma,
  • Rui Chen,
  • Jinghui Fan,
  • Wenxin Ye,
  • Zhuo Chen,
  • Qixin Huang,
  • Lichun Qian

DOI
https://doi.org/10.3390/antiox13040458
Journal volume & issue
Vol. 13, no. 4
p. 458

Abstract

Read online

The aim of this experiment was to investigate the effects of dietary Phytosterol Ester (PSE) supplementation on egg characteristics, eggshell ultrastructure, antioxidant capacity, liver function, hepatic metabolites, and its mechanism of action in Hy-Line Brown laying hens during peak laying period. A total of 256 healthy Hy-Line Brown laying hens were randomly allocated into four groups. The hens in the control group were fed a basal diet, while those in the experimental groups were fed a basal diet further supplemented with 10, 20, and 40 mg/kg PSE, respectively. It was found that the addition of 20 mg/kg and 40 mg/kg PSE to the diets increased egg weight, but decreased egg breaking strength (p p p p p p p = 0.033). Aspartyl-Isoleucine also increased significantly at a dose of 10 mg/kg (p = 0.044). The concentration of total protein in the liver was significantly higher at doses of 20 and 40 mg/kg than that of the control group, and the concentrations of total cholesterol and low-density lipoprotein cholesterol were significantly reduced (p p p p p < 0.05) in the 10 mg/kg and 40 mg/kg doses. Metabolomics analyses revealed that PSEs play a role in promoting protein synthesis by promoting Aminoacyl-tRNA biosynthesis and amino acid metabolism, among other pathways. This study showed that the dietary addition of PSEs improved egg characteristics, antioxidant capacity, liver function, and symptoms of fatty liver hemorrhagic syndrome in Hy-Line Brown laying hens at peak laying stage. The changes in liver metabolism suggest that the mechanism of action may be related to pathways such as Aminoacyl-tRNA biosynthesis and amino acid metabolism. In conclusion, the present study demonstrated that PSEs are safe and effective dietary additives as an alternative to antibiotics.

Keywords