Toxics (Feb 2023)

Preliminary Study on the Protective Effects and Molecular Mechanism of Procyanidins against PFOS-Induced Glucose-Stimulated Insulin Secretion Impairment in INS-1 Cells

  • Hai-Ming Xu,
  • Meng-Yu Wu,
  • Xin-Chen Shi,
  • Ke-Liang Liu,
  • Ying-Chi Zhang,
  • Yin-Feng Zhang,
  • Hong-Mei Li

DOI
https://doi.org/10.3390/toxics11020174
Journal volume & issue
Vol. 11, no. 2
p. 174

Abstract

Read online

This study aimed to investigate the effects of perfluorooctanesulfonic acid (PFOS) exposure on glucose-stimulated insulin secretion (GSIS) of rat insulinoma (INS-1) cells and the potential protective effects of procyanidins (PC). The effects of PFOS and/or PC on GSIS of INS-1 cells were investigated after 48 h of exposure (protein level: insulin; gene level: glucose transporter 2 (Glut2), glucokinase (Gck), and insulin). Subsequently, the effects of exposure on the intracellular reactive oxygen species (ROS) activity were measured. Compared to the control group, PFOS exposure (12.5, 25, and 50 μM) for 48 h had no significant effect on the viability of INS-1 cells. PFOS exposure (50 μM) could reduce the level of insulin secretion and reduce the relative mRNA expression levels of Glut2, Gck, and insulin. It is worth noting that PC could partially reverse the damaging effect caused by PFOS. Significantly, there was an increase in ROS after exposure to PFOS and a decline after PC intervention. PFOS could affect the normal physiological function of GSIS in INS-1 cells. PC, a plant natural product, could effectively alleviate the damage caused by PFOS by inhibiting ROS activity.

Keywords