Catalysts (Feb 2023)

MIL-53(Fe)@perylene Diimide All-Organic Heterojunctions for the Enhanced Photocatalytic Removal of Pollutants and Selective Oxidation of Benzyl Alcohol

  • Kaiyang Shi,
  • Fulin Wang,
  • Xiangwei Li,
  • Weiya Huang,
  • Kang-Qiang Lu,
  • Changlin Yu,
  • Kai Yang

DOI
https://doi.org/10.3390/catal13030471
Journal volume & issue
Vol. 13, no. 3
p. 471

Abstract

Read online

Organic semiconductors are promising materials for the photocatalytic treatment of pollutants and organic synthesis. Herein, MIL-53(Fe)@perylene diimide (PDI) organic heterojunctions were constructed by ultrasonic assembly using PDI as the co-catalyst, and PDI organic supramolecular material was uniformly distributed on the surfaces of MIL-53(Fe). The most effective M53@PDI-20 organic heterojunctions achieved 72.7% photodegradation of rhodamine B (10 mg/L) within 50 min and a 99.9% reduction in Cr(VI) (10 mg/L) for 150 min, and the corresponding apparent degradation rate constants were higher than a single component. Meanwhile, the conversion rate of benzyl alcohol over M53@PDI-20 achieved 91.5% for 5 h with a selectivity of above 90% under visible light exposure, which was more than double that of PDI. The well-matched band structures and the strong π–π bonding interactions between MIL-53(Fe) and PDI can increase the electron delocalization effect to facilitate the transfer and separation of photogenerated carriers. Lots of oxidative reactive species (h+, •O2− and •OH) also played a great contribution to the strong oxidation capacity over the heterojunctions system. This work suggests that MIL-53(Fe)@PDI organic heterojunctions may be a promising material for pollutant removal and organic synthesis.

Keywords