Entropy (Feb 2012)

Temporal Asymmetry, Entropic Irreversibility, and Finite-Time Thermodynamics: From Parmenides–Einstein Time-Reversal Symmetry to the Heraclitan Entropic Arrow of Time

  • Wassim M. Haddad

DOI
https://doi.org/10.3390/e14030407
Journal volume & issue
Vol. 14, no. 3
pp. 407 – 455

Abstract

Read online

In this paper, we combine the two universalisms of thermodynamics and dynamical systems theory to develop a dynamical system formalism for classical thermodynamics. Specifically, using a compartmental dynamical system energy flow model we develop a state-space dynamical system model that captures the key aspects of thermodynamics, including its fundamental laws. In addition, we establish the existence of a unique, continuously differentiable global entropy function for our dynamical system model, and using Lyapunov stability theory we show that the proposed thermodynamic model has finite-time convergent trajectories to Lyapunov stable equilibria determined by the system initial energies. Finally, using the system entropy, we establish the absence of Poincaré recurrence for our thermodynamic model and develop clear and rigorous connections between irreversibility, the second law of thermodynamics, and the entropic arrow of time.

Keywords