Molecules (Sep 2024)

A Comparative Review of Graphene and MXene-Based Composites towards Gas Sensing

  • Pushpalatha Vijayakumar Vaishag,
  • Jin-Seo Noh

DOI
https://doi.org/10.3390/molecules29194558
Journal volume & issue
Vol. 29, no. 19
p. 4558

Abstract

Read online

Graphene and MXenes have emerged as promising materials for gas sensing applications due to their unique properties and superior performance. This review focuses on the fabrication techniques, applications, and sensing mechanisms of graphene and MXene-based composites in gas sensing. Gas sensors are crucial in various fields, including healthcare, environmental monitoring, and industrial safety, for detecting and monitoring gases such as hydrogen sulfide (H2S), nitrogen dioxide (NO2), and ammonia (NH3). Conventional metal oxides like tin oxide (SnO2) and zinc oxide (ZnO) have been widely used, but graphene and MXenes offer enhanced sensitivity, selectivity, and response times. Graphene-based sensors can detect low concentrations of gases like H2S and NH3, while functionalization can improve their gas-specific selectivity. MXenes, a new class of two-dimensional materials, exhibit high electrical conductivity and tunable surface chemistry, making them suitable for selective and sensitive detection of various gases, including VOCs and humidity. Other materials, such as metal-organic frameworks (MOFs) and conducting polymers, have also shown potential in gas sensing applications, which may be doped into graphene and MXene layers to improve the sensitivity of the sensors.

Keywords