Environment International (Aug 2024)

The response of gut microbiota to arsenic metabolism is involved in arsenic-induced liver injury, which is influenced by the interaction between arsenic and methionine synthase

  • Han Li,
  • Fuping Ye,
  • Zhenyang Li,
  • Xiaoshan Peng,
  • Lu Wu,
  • Qizhan Liu

Journal volume & issue
Vol. 190
p. 108824

Abstract

Read online

The drivers of changes in gut microbiota under arsenic exposure and the mechanism by which microbiota affect arsenic metabolism are still unclear. Here, C57BL/6 mice were exposed to 0, 5, or 10 ppm NaAsO2 in drinking water for 6 months. The results showed that arsenic exposure induced liver injury and increased the abundance of folic acid (FA)/vitamin B12 (VB12)- and butyrate-synthesizing microbiota. Statistical analysis and in vitro cultures showed that microbiota were altered to meet the demand for FA/VB12 by arsenic metabolism and to resist the toxicity of unmetabolized arsenic. However, at higher arsenic levels, changes of these microbiota were inconsistent. A 3D molecular simulation showed that arsenic bound to methionine synthase (MTR), which was confirmed by SEC-UV-DAD (1 μM recombinant human MTR was purified with 0 or 2 μM NaAsO2 at room temperature for 1 h) and fluorescence-labeled arsenic co-localization (primary hepatocytes were exposed to 0, 0.5, or 1 μM ReAsH-EDT2 for 24 h) in non-cellular and cellular systems. Mechanistically, the arsenic-MTR interaction in the liver interferes with the utilization of FA/VB12, which increases arsenic retention and thus results in a substantial increase in the abundance of butyrate-synthesizing microbiota compared to FA/VB12-synthesizing microbiota. By exposing C57BL/6J mice to 0 or 10 ppm NaAsO2 with or without FA (6 mg/L) and VB12 (50 μg/L) supplementation in their drinking water for 6 months, we constructed an FA/VB12 intervention mouse model and found that FA/VB12 supplementation blocked the disturbance of gut microbiota, restored MTR levels, promoted arsenic metabolism, and alleviated liver injury. We demonstrate that the change of gut microbiota is a response to arsenic metabolism, a process influenced by the arsenic-MTR interaction. This study provides new insights for understanding the relationship between gut microbiota and arsenic metabolism and present therapeutic targets for arseniasis.

Keywords