Theory and Applications of Graphs (Jan 2015)

Second Hamiltonian Cycles in Claw-Free Graphs

  • Hossein Esfandiari,
  • Colton Magnant,
  • Pouria Salehi Nowbandegani,
  • Shirdareh Haghighi

DOI
https://doi.org/10.20429/tag.2015.020102
Journal volume & issue
Vol. 2, no. 1

Abstract

Read online

Sheehan conjectured in 1975 that every Hamiltonian regular simple graph of even degree at least four contains a second Hamiltonian cycle. We prove that most claw-free Hamiltonian graphs with minimum degree at least 3 have a second Hamiltonian cycle and describe the structure of those graphs not covered by our result. By this result, we show that Sheehan’s conjecture holds for claw-free graphs whose order is not divisible by 6. In addition, we believe that the structure that we introduce can be useful for further studies on claw-free graphs.

Keywords