IET Image Processing (Dec 2020)

Automatic production of synthetic labelled OCT images using an active shape model

  • Hajar Danesh,
  • Keivan Maghooli,
  • Alireza Dehghani,
  • Rahele Kafieh

DOI
https://doi.org/10.1049/iet-ipr.2020.0075
Journal volume & issue
Vol. 14, no. 15
pp. 3812 – 3818

Abstract

Read online

Limited labelled data is a challenge in the field of medical imaging and the need for a large number of them is paramount for the training of machine learning algorithms, as well as measuring the performance of image processing algorithms. The purpose of this study is to construct synthetic and labelled optical coherence tomography (OCT) data to solve the problems of having access to accurately labelled data and evaluating the processing algorithms. In this study, a modified active shape model is used which considers the anatomical features of available images such as the number and thickness of the layers as well as their associated brightness, the location of retinal blood vessels and shadow information with respect to speckle noise. The algorithm is also able to provide different data sets with the varying noise level. The validity of the proposed method for the synthesis of retinal images is measured by two methods (qualitative assessment and quantitative analysis).

Keywords