Existence and Stability Results for a Fractional Order Differential Equation with Non-Conjugate Riemann-Stieltjes Integro-Multipoint Boundary Conditions
Bashir Ahmad,
Ymnah Alruwaily,
Ahmed Alsaedi,
Sotiris K. Ntouyas
Affiliations
Bashir Ahmad
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Ymnah Alruwaily
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Ahmed Alsaedi
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Sotiris K. Ntouyas
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
We discuss the existence and uniqueness of solutions for a Caputo-type fractional order boundary value problem equipped with non-conjugate Riemann-Stieltjes integro-multipoint boundary conditions on an arbitrary domain. Modern tools of functional analysis are applied to obtain the main results. Examples are constructed for the illustration of the derived results. We also investigate different kinds of Ulam stability, such as Ulam-Hyers stability, generalized Ulam-Hyers stability, and Ulam-Hyers-Rassias stability for the problem at hand.