Entropy (Feb 2012)
Special Issue: Tsallis Entropy
Abstract
One of the crucial properties of the Boltzmann-Gibbs entropy in the context of classical thermodynamics is extensivity, namely proportionality with the number of elements of the system. The Boltzmann-Gibbs entropy satisfies this prescription if the subsystems are statistically (quasi-) independent, or typically if the correlations within the system are essentially local. In such cases the energy of the system is typically extensive and the entropy is additive. In general, however, the situation is not of this type and correlations may be far from negligible at all scales. Tsallis in 1988 introduced an entropic expression characterized by an index q which leads to a non-extensive statistics. Tsallis entropy, Sq, is the basis of the so called non-extensive statistical mechanics, which generalizes the Boltzmann-Gibbs theory. Tsallis statistics have found applications in a wide range of phenomena in diverse disciplines such as physics, chemistry, biology, medicine, economics, geophysics, etc. The focus of this special issue of Entropy was to solicit contributions that apply Tsallis entropy in various scientific fields. [...]
Keywords