大数据 (Jul 2022)
Survey on federated recommendation systems
Abstract
In the federated learning (FL) paradigm, the original data are stored in independent clients while masked data are sent to a central server to be aggregated, which proposes a novel design approach to numerous domains.Given the wide application of recommendation systems (RS) in diverse domains, combining RS with FL techniques has been gaining momentum to reduce the computational cost, do cross-domain recommendation and protect users’ privacy while maintaining recommendations performance as traditional RS.The federated learning-based recommendation systems in recent years were comprehensively summarized.The difference between traditional and federated recommendation systems was analyzed, and the main research direction and progress of federated recommendation systems were demonstrated with comparison and analysis.Firstly, the traditional recommendation systems and their bottleneck were summarized.Then the federated learning paradigm was introduced.Furthermore, the advantages of combining federated learning with recommendation systems were depicted in two aspects: privacy protection and usage of multi-domain user information, along with the technical challenges during the combination.At the same time, the existing deployment of federated recommendation systems was illustrated in detail.Finally, future research on federated recommendation systems was prospected and summarized.